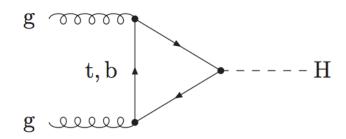
# Determining the gluon PDF

Jennet Dickinson Physics 290e April 20, 2016

#### Outline

- What are PDFs? Why are they important?
- What do we learn about g(x, μ²) from deep inelastic scattering experiments?
- What do we learn about g(x, μ²) from hadronhadron colliders?

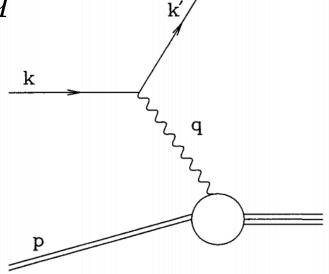

How do we get PDFs from data?

#### Parton distribution functions

- Parton distribution functions (PDFs) describe the content of the proton
- PDFs depend on:
  - Bjorken x: the fraction of the proton momentum carried by the parton
  - Scale  $\mu^2$  (Q<sup>2</sup>): what you see inside the proton depends on the energy you probe it with
- The gluon PDF  $g(x,\mu^2)$  gives the probability that the proton contains a gluon with momentum fraction x at scale  $\mu^2$

## Why do we need PDFs?

- To make predictions!
- Example: Higgs production by gluon fusion
  - This is the main production mechanism for a Higgs at the LHC




 To calculate the cross section for this process in pp collisions, we need to know the gluon PDF

## Deep Inelastic Scattering

- Know p and k (from your beam/target)
- Measure k'
- This is enough to determine all of the following, with  $Q^2 = -q^2$

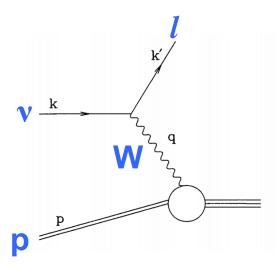
$$M^{2} = p^{2}$$
 $\nu = p \cdot q = M(E' - E)$ 
 $x = \frac{Q^{2}}{2\nu} = \frac{Q^{2}}{2M(E - E')}$ 
 $y = \frac{q \cdot p}{k \cdot p} = 1 - E'/E$ ,



## Deep Inelastic Scattering

Charged lepton scattering

$$lp \rightarrow lX$$


$$\frac{d^2\sigma^{em}}{dxdy} = \frac{8\pi\alpha^2 ME}{Q^4} \left[ \left( \frac{1 + (1-y)^2}{2} \right) 2x F_1^{em} + (1-y)(F_2^{em} - 2x F_1^{em}) - (M/2E)xy F_2^{em} \right]$$



Neutrino scattering

$$\nu p \to lX$$

$$\frac{d^2\sigma^{\nu(\bar{\nu})}}{dxdy} = \frac{G_F^2 M E}{\pi} \left[ (1 - y - \frac{M}{2E} x y) F_2^{\nu(\bar{\nu})} + y^2 x F_1^{\nu(\bar{\nu})} + (-) y (1 - \frac{1}{2} y) x F_3^{\nu(\bar{\nu})} \right]$$



## Deep Inelastic Scattering

Charged lepton scattering

$$lp \to lX$$

$$\frac{d^{2}\sigma^{em}}{dxdy} = \frac{8\pi\alpha^{2}ME}{Q^{4}} \left[ \left( \frac{1 + (1 - y)^{2}}{2} \right) 2xF_{1}^{em} + (1 - y)(F_{2}^{em}) - 2xF_{1}^{em} \right] - (M/2E)xyF_{2}^{em}$$

# Structure Functions

$$F_i(x,Q^2)$$

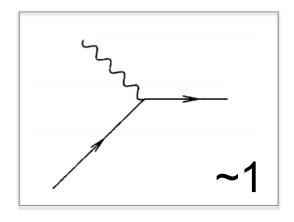
Neutrino scattering

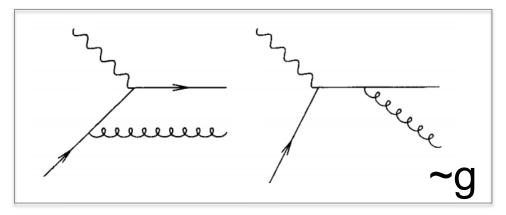
$$\nu p \to lX$$

$$\frac{d^{2}\sigma^{\nu(\bar{\nu})}}{dxdy} = \frac{G_{F}^{2}ME}{\pi} \left[ (1 - y - \frac{M}{2E}xy)F_{2}^{\nu(\bar{\nu})} + (-) y(1 - \frac{1}{2}y)xF_{3}^{\nu(\bar{\nu})} \right]$$

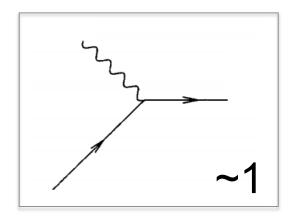
#### Determining PDFs from DIS

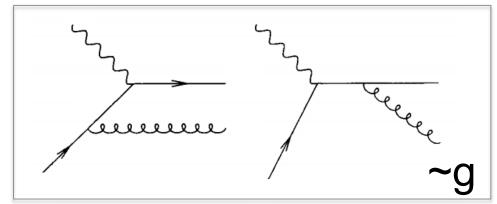
- Bjorken limit:  $Q^2 \to \infty$ 
  - In this limit, the parton momentum is parallel to the proton momentum
- The structure functions are sensitive to the quark PDFs


$$F_2^{em}(x) = 2xF_1^{em}(x) = \sum_{q,\bar{q}} e_q^2 x q(x)$$

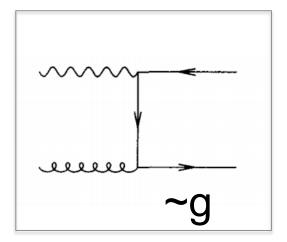

 Can we learn anything about the gluon PDF from these experiments?

#### Determining PDFs from DIS


- To learn about the gluon PDF, we must consider higher order in perturbation theory
  - Allow quarks to emit a gluon
- The Bjorken limit no longer applies
  - Gluon emission allows quarks to acquire momentum perpendicular to proton momentum
  - Scaling violation: must consider dependence of structure functions (and PDFs) on Q<sup>2</sup>
- Calculate the structure functions to first order in α<sub>S</sub> ~ g<sup>2</sup> for ep collisions


• Contributing diagrams for  $\gamma q o q X$ 






- Contributing diagrams for  $\gamma q o q X$ 





• Contributing diagrams for  $\gamma g o q X$ 



Through  $\gamma g \to q \bar{q}$  we are sensitive to the gluon PDF!

- Now just do QFT! Or consult a book…
  - R. K. Ellis, W. J. Stirling, and B. R. Webber, QCD and collider physics. Cambridge Univ. Press,
     Cambridge, UK, 1996.
- Find for electron-proton scattering:

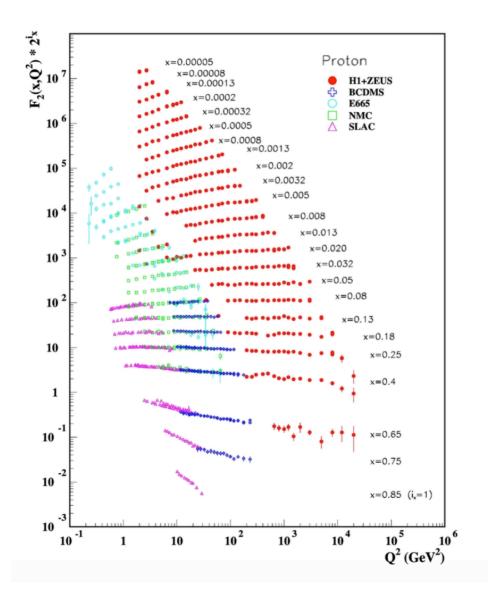
$$F_{2}(x,Q^{2}) = x \sum_{q,\bar{q}} e_{q}^{2} \int_{x}^{1} \frac{d\xi}{\xi} q(\xi,Q^{2}) \left\{ \delta(1-\frac{x}{\xi}) + \frac{\alpha_{S}}{2\pi} C_{q}^{\overline{\text{MS}}} \left(\frac{x}{\xi}\right) + \ldots \right\}$$

$$+x \sum_{q,\bar{q}} e_{q}^{2} \int_{x}^{1} \frac{d\xi}{\xi} \underline{g(\xi,Q^{2})} \left\{ \frac{\alpha_{S}}{2\pi} C_{g}^{\overline{\text{MS}}} \left(\frac{x}{\xi}\right) + \ldots \right\}.$$

- Now just do QFT! Or consult a book…
  - R. K. Ellis, W. J. Stirling, and B. R. Webber, QCD and collider physics. Cambridge Univ. Press,
     Cambridge, UK, 1996.
- Find for electron-proton scattering:

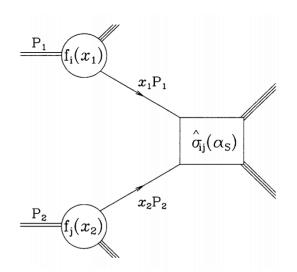
$$F_{2}(x,Q^{2}) = x \sum_{q,\bar{q}} e_{q}^{2} \int_{x}^{1} \frac{d\xi}{\xi} q(\xi,Q^{2}) \left\{ \delta(1-\frac{x}{\xi}) + \frac{\alpha_{S}}{2\pi} C_{q}^{\overline{\mathrm{MS}}} \left(\frac{x}{\xi}\right) + \dots \right\}$$

$$+ x \sum_{q,\bar{q}} e_{q}^{2} \int_{x}^{1} \frac{d\xi}{\xi} \underline{g}(\xi,Q^{2}) \left\{ \frac{\alpha_{S}}{2\pi} C_{g}^{\overline{\mathrm{MS}}} \left(\frac{x}{\xi}\right) + \dots \right\}.$$


Coefficient functions (known. depend on renormalization scheme, etc.)

$$F_{2}(x,Q^{2}) = x \sum_{q,\bar{q}} e_{q}^{2} \int_{x}^{1} \frac{d\xi}{\xi} q(\xi,Q^{2}) \left\{ \delta(1-\frac{x}{\xi}) + \frac{\alpha_{S}}{2\pi} C_{q}^{\overline{MS}} \left(\frac{x}{\xi}\right) + \dots \right\}$$

$$+x \sum_{q,\bar{q}} e_{q}^{2} \int_{x}^{1} \frac{d\xi}{\xi} \underline{g(\xi,Q^{2})} \left\{ \frac{\alpha_{S}}{2\pi} C_{g}^{\overline{MS}} \left(\frac{x}{\xi}\right) + \dots \right\}.$$

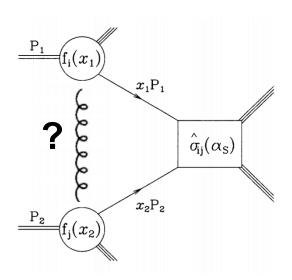

- We do learn something about the gluon PDF from DIS experiments!
- But this is not ideal:
  - Gluon PDF does not show up at leading order

## Summary of DIS Experiments



- Can see the dependence of the structure function F<sub>2</sub> on x and Q<sup>2</sup>
- PDFs are extracted from cross section measurements
  - e.g. H1 and ZEUS at the ep collider HERA

#### PDFs at hadron-hadron colliders




 Total cross section can be determined from PDFs and cross section of underlying process

$$\sigma(P_1, P_2) = \sum_{i,j} \int dx_1 dx_2 \ f_i(x_1, \mu^2) f_j(x_2, \mu^2) \ \hat{\sigma}_{ij}(p_1, p_2, \alpha_S(\mu^2), Q^2/\mu^2).$$

#### PDFs at hadron-hadron colliders

- If we measure PDFs in ep and pp collisions, do we expect them to agree?
  - Do strong interactions between hadrons distort the PDFs?



#### PDFs at hadron-hadron colliders

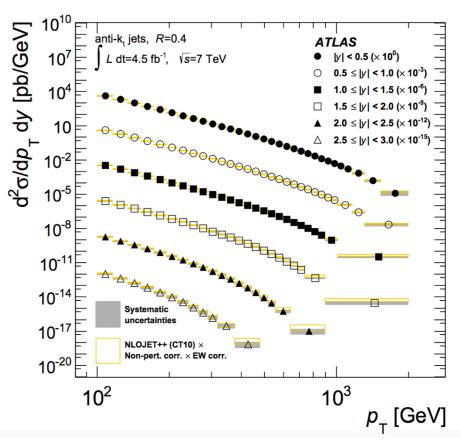
- If we measure PDFs in ep and pp collisions, do we expect them to agree?
  - Do strong interactions between hadrons distort the PDFs?
- These interactions give corrections ~ powers of m<sup>2</sup>/E<sub>CM</sub><sup>2</sup>
  - Ok to neglect these at high energies
- So PDFs will be the same in ep and high energy pp experiments

# PDFs from jet production

Processes resulting in two jets:

$$qq 
ightarrow qq$$
  $qar{q} 
ightarrow qar{q}$   $gq 
ightarrow gar{q}$   $gar{q} 
ightarrow gar{q}$   $gg 
ightarrow gg$ 

# PDFs from jet production

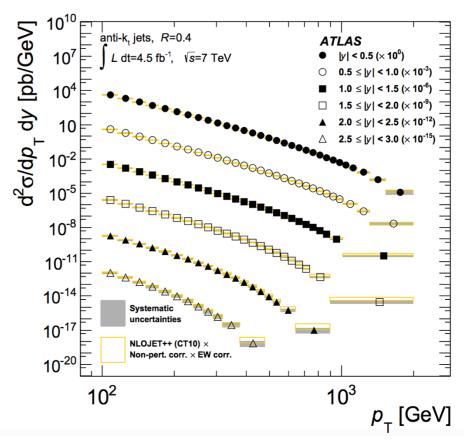

Processes resulting in two jets:

$$egin{array}{ll} qq 
ightarrow qq & ar qar q 
ightarrow ar qar q \ qar q 
ightarrow gg & qar q 
ightarrow qar q \ gq 
ightarrow gar q 
ightarrow gar q 
ightarrow gar q 
ightarrow gar q 
ightarrow gg 
ightarrow gg 
ightarrow gg 
ightarrow gg 
ightarrow with gluons \end{array}$$

- The gluon PDF enters at leading order!
- Can experimentally measure inclusive jet cross section and learn about  $g(x, \mu^2)$

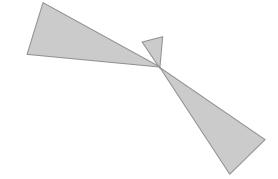
## Inclusive jet cross section

22




Why inclusive?

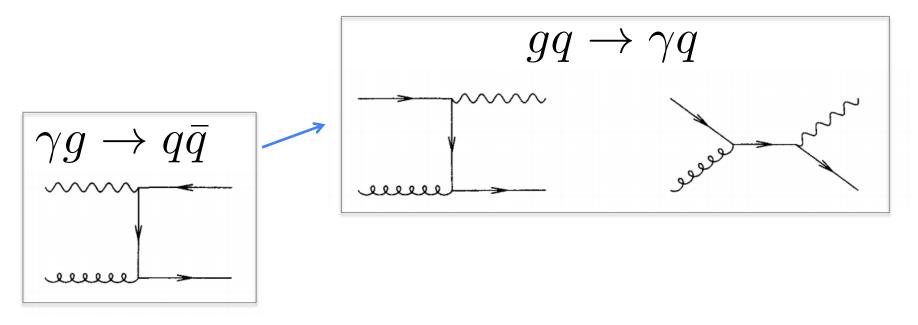
Measurement from ATLAS at 7 TeV


22

### Inclusive jet cross section

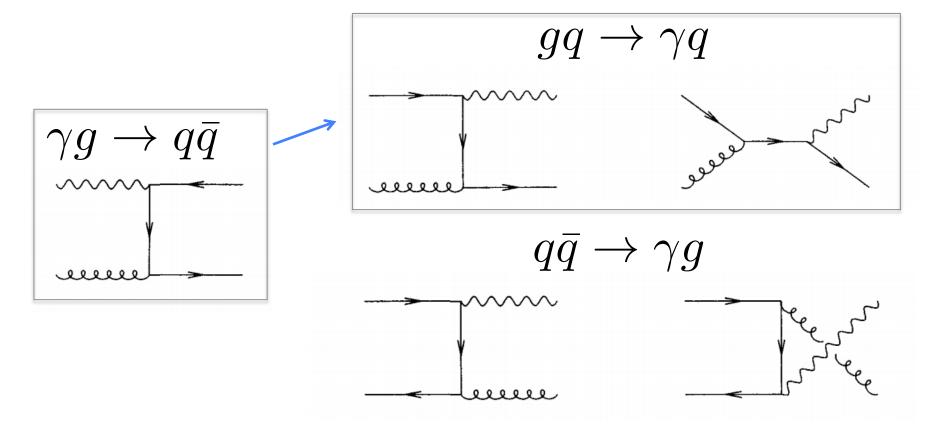


Measurement from ATLAS at 7 TeV


- Why inclusive?
- Is this 2 jets or 3?

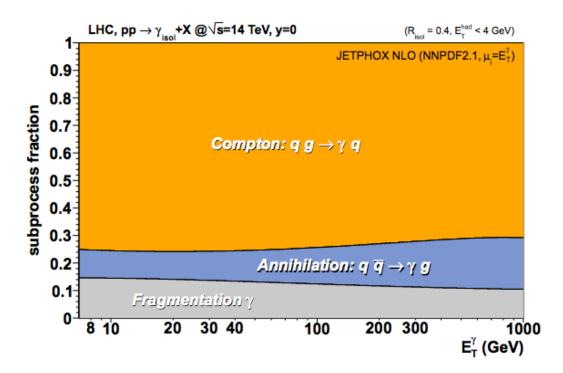


 For the inclusive cross section, it doesn't matter if you're wrong


## Prompt photon production

 Try flipping the diagram that was most useful for DIS!

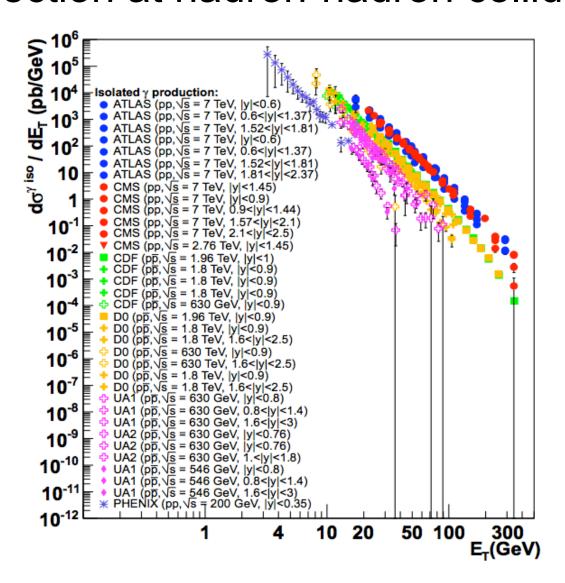



## Prompt photon production

 Try flipping the diagram that was most useful for DIS!



### Prompt photon production


- Relative contribution of prompt photon processes at the LHC at 14 TeV
  - The useful one dominates!



#### ATLAS prompt γ search at 7 TeV

- Look for events containing one photon
- The photon must be
  - Energetic enough: photon  $E_T > 100 \text{ GeV}$
  - Isolated: extra  $E_T$  inside a cone of size  $\Delta R = 0.4$  around the photon must be < 7 GeV
  - In the barrel or end-cap ( $|\eta|$ <1.37 or 1.52< $|\eta|$ <2.37), where the electromagnetic calorimeter can measure the energy most accurately
- Main background is light mesons decaying to photons, such as  $\pi^0$

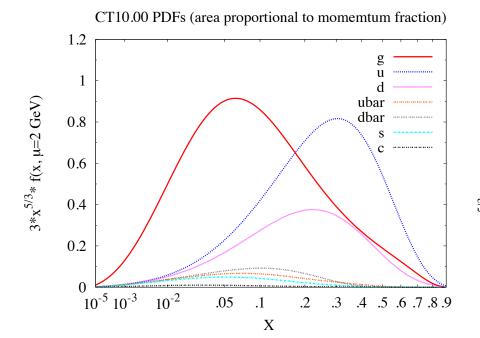
# Measurements of prompt photon cross section at hadron-hadron colliders

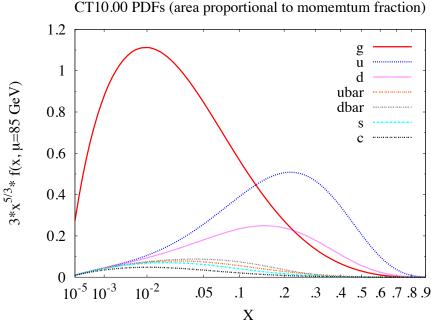


### Extracting PDFs from data

 Assume a functional form for the PDFs, and then fit to cross section data

$$f_i(x,\mu^2) = A_0 x^{A_1} (1-x)^{A_2} P_i(x;A_3,\ldots)$$
 for P<sub>i</sub> some smooth function


- I won't talk about the statistics magic that is required to accomplish:
  - Fitting to data from many experiments
  - Getting uncertainties out of these fits


# Regions in x, $Q^2$ ( $\mu^2$ ) where different experiments are useful for determining PDFs



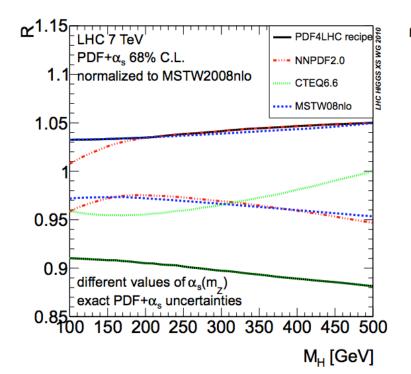
#### Modern PDF sets

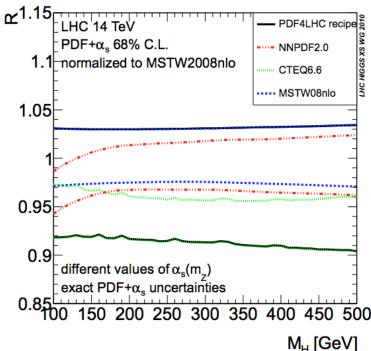
- Many groups have done these fits and put forward sets of PDFs
- All find that the gluon dominates at low x, especially at high  $\mu^2$





#### Modern PDF sets


- Many PDF sets are available here for use in Monte Carlo simulations:
  - https://lhapdf.hepforge.org/pdfsets.html
- These PDF sets differ in many ways:
  - Functional form of the PDFs
  - Number of parameters in the fit
  - What data is used in the fits
  - Order in perturbation theory
  - Details of the statistical methods


#### PDF uncertainties

- Some factors contributing to the PDF uncertainty:
  - Uncertainties from input data from many experiments (not always consistent!)
  - Uncertainty on values of physical parameters (especially  $\alpha_{S}$ , also heavy quark masses, etc.)
  - Order in perturbation theory

### PDF uncertainties: an example

- Uncertainties on the cross section of Higgs production via gluon fusion
- Bands shown are combined PDF+ $\alpha_{\text{S}}$  uncertainty for several PDF sets





## Summary

- We need PDFs (and uncertainties) if we want to make accurate predictions!
- We get information about the gluon PDF by measuring cross sections of
  - Deep inelastic scattering
  - Jet production
  - Prompt photon production
- Modern PDF sets are obtained by fitting data from these experiments

#### References

- R. K. Ellis, W. J. Stirling, and B. R. Webber, QCD and collider physics. Cambridge Univ. Press, Cambridge, UK, 1996.
- http://xxx.lanl.gov/pdf/1301.6754v1
- http://arxiv.org/pdf/1101.0593v3.pdf
- http://arxiv.org/pdf/1201.3084v1.pdf
- http://web.hep.uiuc.edu/atlas/OA Software/ QuarksAndGluonsReviewPaper.pdf
- http://xxx.lanl.gov/pdf/1202.1762v2
- https://arxiv.org/pdf/1410.8857v3
- https://arxiv.org/pdf/1311.1440v1